Genomik Breeding Value Estimation
Genomik Breeding
DOI:
https://doi.org/10.5281/zenodo.18234811Keywords:
Breeding value estimation, Selection, Genetic breedingAbstract
Animal breeding began approximately 10,000 years ago with domestication, known as the first breeding effort. From domestication to the present day, effective selection and breeding programs have led to significant genetic advances in various animal groups across many traits. Phenotype-based selection, based on breeding indicator prediction, has increased selection intensity and shortened breeding intervals. The goal of genetic improvement in breeding is to enable the modification of desired traits in future generations under current environmental conditions. To obtain improved traits, the genotype must be incorporated along with environmental factors. For this purpose, advances in current technology have enabled the use of genomic methods, enabling the use of classical breeding methods such as REML and BLUP. These traits are described in marker-assisted selection and genomic selection.
References
Andersson, L. (2001). Genetic dissection of phenotypic diversity in farm animals. Nature Reviews Genetics, 2(2), 130–138.
Bal, O., & Akyüz, B. (2014). Halk elinde yetiştirilen holştayn, doğu anadolu kırmızısı ve yerli kara sığır ırklarında diacylglycerol O-Acyltransferase 1 (DGAT 1) gen polimorfizminin PCR-RFLP yöntemi ile belirlenmesi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 11(1), 7–13.
Bouquet, A., & Juga, J. (2013). Integrating genomic selection into dairy cattle breeding programmes: a review. Animal, 7(5), 705–713.
Cole, J. B., & Silva, M. V. G. B. (2016). Genomic selection in multi-breed dairy cattle populations. Revista Brasileira de Zootecnia, 45(4), 195–202.
Daş, H. (2015). QTL tespiti için hayvanlarda kullanılan populasyonlar ve istatistiksel metotlar. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 4(2), 27–297.
Dekkers, J. C. M. (2004). Commercial application of marker- and geneassisted selection in livestock: Strategies and lessons. Journal of Animal Science, 82(13, Ek), 313–328. https://doi.org/10.2527/2004.8213_supplE313x
Eggen, A. (2012). The development and application of genomic selection as a new breeding paradigm. Animal Frontiers, 2(1), 10–15. https://doi.org/10.2527/af.2011-0027
Goddard, M. E., & Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics, 10(6), 381–391.
Gürses, M., & Bayraktar, M. (2014). Moleküler markerlerin hayvan yetiştiriciliği ve genetiğinde kullanımı. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, 28(2), 99–106.
Hayes, B. J. (2007). QTL mapping, MAS, and genomic selection. İçinde A short-course organized by Animal breeding & Genetics (ss. Sayfa aralığı eksik). Department of Animal Science, Iowa State University.
Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92(2), 433–443.
Hayes, B. J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29(4), 206–214.
Jonas, E., & de Koning, D. J. (2015). Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Frontiers in Genetics, 6, 49.
Kappes, S. M. (1999). Utilization of gene mapping information in livestock animals. Theriogenology, 51(1), 135–147.
Komisarek, J., & Dorynek, Z. (2009). Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in polish holstein-friesian bulls. Journal of Applied Genetics, 50(2), 125–132.
Koning, D. J. D. (2008). Application of molecular information in sustainable animal breeding. Revista Brasileira de Zootecnia, 37, 122–126.
McGill, D., & Lievaart, J. J. (2011). Genomic selection in dairy cattle: A review and discussion on some possible applications. İçinde Dairy Research Foundation Symposium (ss. 117–122).
Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829.
Özbeyaz, C., & Kocakaya, A. (2011). Süt sığırlarında genomik değerlendirme (derleme). Lalahan Hayvan Araştırma Enstitüsü Dergisi, 51(2), 93–104.
Özdemir, M., & Doğru, Ü. (2008). Sığırların verim özellikleri üzerine etkili önemli moleküler markörler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 39(1), 127–135.
Özşensoy, Y., & Kurar, E. (2013). Genetik bağlantı analizi ve uygulama alanları. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 10(1), 53–62.
Özyurt, A. (2009). TİGEM Esmer popülasyonunda döl kontrolü (progeny testing) ve uygulama olanakları. Tekirdağ Ziraat Fakültesi Dergisi, 6(3), 257–264.
SAS Institute Inc. (2007). QTL mapping, MAS, and genomic selection: A short-course organized by Animal breeding & Genetics (B. J. Hayes). Department of Animal Science, Iowa State University.
Schaeffer, L. R. (2006). Strategy for applying Genome-wide selection dairy cattle. Journal of Animal Breeding and Genetics, 123(4), 218–223.
Schefers, J. M., & Weigel, K. A. (2012). Genomic selection in dairy cattle: Integration of DNA testing into breeding programs. Animal Frontiers, 2(1), 4–9.
Sharma, A., Lee, J. S., Dang, C. G., Sudrajad, P., Kim, H. C., Yeon, S. Y., Kang, H. S., & Lee, S. H. (2015). Stories and challenges of genome wide association studies in livestock- a review. Asian-Australasian Journal of Animal Sciences, 28(10), 1371. https://doi.org/10.5713/ajas.14.0715
Tırpan, M. B., & Tekin, N. (2014). Türkiye’deki progeny test çalışmalarına genel bir bakış. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 11(3), 197–203.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Black Sea Journal of Statistics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.