Estimating the Nonparametric Confidence Interval for Correlation Coefficient on Animal Data
DOI:
https://doi.org/10.5281/zenodo.18234659Keywords:
Correlation coefficient, Nonparametric confidence interval, AnimalAbstract
Correlation coefficient is widely used in the all areas of science to establish the degree and direction of two variables. Confidence interval is a special form of estimating a certain parameter. With use of this method, a whole interval of acceptable values for the parameter is given instead of a single value, together with a likelihood that the real (unknown) value of the parameter will be in the interval. The confidence interval is based on the observations from a sample, and hence differs from sample to sample. In this study, nonparametric confidence interval estimation for Pearson correlation coefficient were shown using an animal data set.
References
Arkin, H., & Colton, R. R. (1939). Statistical methods. Barnes & Noble Inc.
Köse, K. (2025). Correlation and regression analysis (Sunum slaytları). Toraks Derneği. Erişim adresi: https://file.toraks.org.tr/TORAKSFD23NJKL4NJ4H3BG3JH/mse-ppt-pdf/Kenan_KOSE3.pdf (Alıntı tarihi: 5 Nisan 2020)
Kurdal, N., & Önder, H. (2020). Estimating the nonparametric confidence interval for correlation coefficient on animal data. In International Congress on Animal Breeding, Genetics and and Husbandry (ICABGEH-20) (pp. 89–92).
Mudelsee, M. (2003). Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology, 35(6), 651–665.
Olivoto, T., Lúcio, A. D. C., Souza, V. Q., Nardino, M., Diel, M. I., Sari, B. G., Krysczun, D. K., Meira, D., & Meier, C. (2018). Confidence interval width for Pearson’s correlation coefficient: a Gaussian-independent estimator based on sample size and strength of association. Agronomy Journal, 110(1), 1–8. https://doi.org/10.2134/agronj2017.09.0566
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Black Sea Journal of Statistics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.